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Theories of brain function have evolved through multiple stages. The first proposition was that brain networks support a set of

reflex responses, with current sensory inputs producing immediate motor outputs. The behaviorist paradigm suggested that

actions can always be explained as a response to immediate external cues. In response to these views, the cognitive paradigm

argued that behavior cannot be understood simply as input–output functions because the hidden layers of brain generate

unpredictability. The central processing was termed “cognition.” Here we propose a neuroscience-based model of cognition.

Our core hypothesis is that cognition depends on internal models of the animal and its world, where internally generated

sequences can serve to perform “what if” scenarios and anticipate the possible consequences of alternative actions without

actually testing them, and aid in the decisions of overt actions. We support our hypotheses by several examples of recent

experimental findings and show how externally guided cell assembly sequences become internalized to support cognitive

functions.

Humans, and likely other animals, can imagine far into

the future; we spend a great deal of waking time devoted

to such covert activities (Killingsworth and Gilbert 2010;

Immordino-Yang et al. 2012; Mar et al. 2014). The main

thesis of this essay is that such ability of the brain arises

from its disengagement from immediate overt actions as a

result of experience. We hypothesize that brains, irrespec-

tive of size, are predictive devices that exploit regularity

and recurrence as a fundamental property of the surround-

ing world and apply effective heuristics to make such

predictions. Prediction is made possible by adaptive

mechanisms that are supported by learning rules that ei-

ther apply across generations (evolutionary adaptation) or

within the lifetime of the organism. As a result, organ-

isms can deal with a future occurrence of the same or

similar situations more effectively. This is the fundamen-

tal organization principle of any adaptive system. Here we

describe example organizational brain patterns, with in-

creasing predictive efficiency, and present a hypothesis of

how internally generated neuronal network operations,

detached from outside inputs, can serve as the necessary

substrate for cognition.

One aspect of the argument we will present is that most

brain structures can have “dual use”: at times, connected

to immediate sensory input and output; at other times

entrained by internal signals and brain rhythms. For

many years, researchers tended to associate preexisting

verbal terms, such as memory, planning, envisioning the

future, volition, and decision-making, with different and

distinct brain structures. Oftentimes, even studying the

same structure or system generated seemingly contradic-

tory hypotheses depending on the chosen approach, pre-

conception, or experimental method used. A striking

example is the hippocampal system. Lesion data in hu-

mans provided evidence that bilateral removal of the hip-

pocampi produced severe and irreversible amnesia

(Scoville and Milner 1957). Single unit studies in the

hippocampus and entorhinal cortex of animals gave rise

to the prominent theory that the fundamental function of

the hippocampal system is supporting spatial navigation

(O’Keefe and Nadel 1978; Hafting et al. 2005; McNaugh-

ton et al. 2006), assisted by inputs from the head-direction

system (Ranck 1985; Taube 2007). In contrast, studying

the collective behavior of hippocampal neurons by record-

ing the local field potential (LFP) offered the conclusion

that hippocampal theta oscillations are an unmistakable

reflection of voluntary action (Vanderwolf 1969). These

independent ideas of hippocampal functions persisted in

parallel for decades without true interactions, apart from

occasional polite gestures and references to the competing

frameworks (Buzsáki 2005). As discussed below, these

barriers are now being dismantled by the recognition

that although neurons and networks in the memory/nav-

igational/planning systems are primarily engaged in self-

organized activity by theta oscillations, they can robustly

respond to environmental or body-derived inputs (Frank

et al. 2000; Wood et al. 2000; Fujisawa et al. 2008; Pas-

talkova et al. 2008).

In “simple” nervous systems, the connection between

output and input networks is direct and immediate and the

consequences of their action are mediated by the environ-

ment, as illustrated in Figure 1A. More complex brains

are organized in a “multiple loop” pattern; that is, a series

of interacting parallel loops are imposed between input

and output, as illustrated in Figure 1B,C. For example, in

mammals, new circuits are added onto the monosynaptic
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spinal cord/brainstem afferent–efferent connections,

including the thalamocortical system, cortico-corticorti-

cal, corticocerebellar, corticostriatal, and corticolimbic

loops. As in the simple system, the parallel loops operate

to predict and secure effective outcomes of actions in ever

more complex environments and at much longer time-

scales. These operations require storage of large amounts

of past experience and the ability to evaluate and weigh

the importance of simultaneously experienced modalities

and compare them with similar occurrences in the past

and heuristics responses of the organism. Many of these

operations require that brain activities continue even after

transient or more durable disappearance of sensory inputs

and delaying the brain’s deliberations in terms of effector

outputs. We speculate that such a training process, a result

of both phylogenetic and ontogenetic accumulation of

experience, makes the longer, more complex neuronal

loops “smarter” (i.e., more effective by enabling them

to interpolate and extrapolate events surrounding the or-

ganism). Our second and critical assumption is that a self-

organized computation emerges as a result of training the

brain, which can proceed to deliver abstract goals by

disengaging the effector networks from overt (muscular

or vegetative) actions.

Activity in any system, including the brain, can be

maintained by only two mechanisms: externally applied

energy or intrinsic resources. By definition, a system that

maintains its activity without an external drive must be

driven by “self-organized” mechanisms. “Self-orga-

nized” is the term most often used in physics and engi-

neering that refers to autonomously generated patterns. In

neurophysiology, the term “spontaneous” activity has

been in use for decades to refer to the same process. In

cognitive science, the terms “internally generated” or “in-

ternally organized” refer to the same process. These terms

are synonymous. Therefore, we separate the functioning

of complex brains into two modes: First, an “engaged”

mode, when the immediate environment controls and

feeds back on behavior even when the inputs are quite

complex and actions need to be delayed, illustrated in

Figure 1B. Second, a “disengaged” or detached mode,

when processing continues independent of environmental

inputs and behavioral responses of the animal. This in-

put/output disengagement in the presence of continued

computation of potential responses is what we refer to as

“cognition.” This framework may explain why damage to

multiple loops of the brain has no or relatively minor

impact on operations when input dimensions are limited

and input–output gaps are short, but their role becomes

evident when the organism needs to evaluate a large and

complex parameter space and execute a response most

beneficial to the organism’s needs.

There are costs and advantages to the disengaged

mode. The cost is that it takes greater neural resources

to create the “virtual worlds”; in growing brains, these are

necessary for processing internally generated patterns

without reliance on immediate sensory feedback cues.

In the past, Gibson and heirs developed ideas that have

come to be known as “embodied cognition” (Gibson

1977; O’Regan and Noë 2001; Thompson and Varela

2001). These authors emphasize that the environment

of an animal affords physical and sensory constraints

(i.e., reduces the need to compute all possible circum-

stances) that ease the computational load (Gibson’s

“affordances”). Without real-world constraints, disen-

gaged processing requires that the brain creates a well-

endowed model of the world. With an internalized “vir-

tual world” in the brain, the animal is capable of cognitive

vicarious behavior; that is, it can perform “what if” sce-

narios in its head and anticipate the consequences of

Figure 1. Externally driven and self-organized cell assemblies. (A) Evolutionarily simple brains contain simple neural networks.
Sensory input from the body and the environment activates input neurons, which interact with output neurons to generate appropriate
reflex actions in a short time window. (B) In more complex brains, multiple interacting loops of increasing length improve prediction
of more elaborate events and can make predictions in more complex environments at longer timescales. (C ) After extensive training, the
loops can sustain self-organized, long-lasting neuronal sequences without reliance on external cues and can, therefore, support cognitive
operations such as memory, planning, and imagination. Progression of neuronal operations correlates with elapsed time (green arrows)
irrespective of whether the operations are driven externally or internally. (Reprinted, with permission, from Buzsáki 2013.)
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alternative actions without actually testing them. With

this mechanism at hand, the brain can create new knowl-

edge not only by interacting with the outside world, but

also through “vicarious” (imagined) experience. Disen-

gaged processing, which we call “cognition,” provides

dramatic advantages in predicting the consequence of

actual behavior in complex environments and at long

timescales.

There are numerous examples of disengagement of

brain activity from afferent inputs. A striking example

is the “internalization” of brain rhythms. The first orga-

nized neocortical pattern in the developing mammalian

brain is the emergence of transient periods of spindle-

shaped rhythmic activity at 10–25 Hz amid seconds- or

tens-of-seconds-long silent periods (“tracé alternant”;

Dreyfus-Brisac 1962; Anderson et al. 1985; Khazipov

et al. 2004). In the newborn rat and premature human

babies, all these early spindles are triggered by some

kind of a movement, including isolated muscle twitches,

limb jerks, and whole body startles (Khazipov et al.

2004). This organization is hypothesized to serve as a

mechanism to construct an internal map of the body in

the somatosensory system (Khazipov et al. 2004; Buzsáki

2006; Khazipov and Buzsáki 2010). Once the body map

is formed (5–10 d postnatally in the rat and in the third

trimester of pregnancy in humans), the dependence of

brain activity on action-triggered reafferentation is no

longer needed and spindles become part of sleep, the

default organizing mode of the brain. This is a simple

example of how brain patterns that are initially correlated

with sensorimotor activity can disengage from external

inputs, while sustaining their “spontaneous” activity pat-

terns. Below we discuss two more examples to illustrate

our disengagement hypothesis of cognition. First, we il-

lustrate how neurons in the head direction system contin-

ue their coordinated activity during sleep. Second, we

show how internally organized cell assembly sequences

can support mental travel of memory and action planning,

and how these functions emerge from spatial navigation

in the physical environment.

SELF-ORGANIZED ATTRACTORS

OF DIRECTION SENSE

The relationship between stimulus-driven and self-or-

ganized (or internally generated) activity is a recurring

topic in neuroscience. It is often tacitly assumed that the

information from the sensory world is “relayed” by the

various thalamic nuclei to the neocortex where it is com-

bined with top-down, internally generated cortical ac-

tivity. How feed-forward, “labeled line” sensory signals

in subcortical, thalamic, and cortical networks interact

with self-generated (“spontaneous”) activity is not well-

understood. Part of the difficulty is technical, due largely

to the high dimensionality of sensory signal attributes

(e.g., intensity, color, orientation in case of vision; Rao

and Ballard 1999; Engel et al. 2001; Varela et al. 2001;

Buzsáki 2006).

Perhaps the simplest representation animals have is the

sense of direction. It is simple in the sense that it has a

single dimension, which is the head direction. Head-direc-

tion neurons fire robustly when the animal’s head points in

a specific direction (Ranck 1985; Taube et al 1990a,b;

Taube 2007; McNaughton et al. 2006). Thus, the one-di-

mensional head-direction system offers an opportunity to

understand the nature of external and internal interactions

experimentally. The head-direction system consists of a

largely serially connected brain network, which includes

the brainstem, mammillary bodies, anterodorsal thalamic

nucleus, postsubiculum, and entorhinal cortex (Mc-

Naughton et al. 2006; Sargolini et al. 2006; Taube 2007).

Numerous experiments have showed that head-direc-

tion neurons can be controlled by peripheral inputs, main-

ly the vestibular, visual, and ancillary afferents and the

angular velocity of head rotation (Sharp et al. 2001;

Taube 2007). How do these neurons behave in the ab-

sence of such inputs, when the brain is disengaged from

the environment, as is the case during sleep? Computa-

tional models have long assumed that head-direction neu-

rons with similar preferred directions fire together, while

the other neurons are suppressed. According to these

models, the temporally engaged group of head-direction

neurons (i.e., a “hill of activity” or “an activity packet”)

moves on a virtual ring as the animal turns its head

(Fig. 2; Skaggs et al. 1995; Redish et al. 1996; Burak

and Fiete 2012; Knierim and Zhang 2012). However,

experimental demonstration of the existence of internally

organized neuronal populations endowed with such prop-

erties had to wait until recording technologies matured to

be able to record simultaneous population of neurons and

compare their dynamic interactions during both waking

behavior and sleep. Recent experiments provide such ev-

idence (Peyrache et al. 2015).

Not only do head-direction neurons continue to be ac-

tive during sleep but their temporal sequential activity

patterns in the waking mouse are preserved. At any time,

the neuronal population was characterized by the presence

of an activity packet that was consistent with its structure

during waking: Neurons coding for nearby orientation

continued to fire together. Therefore, a “virtual gaze”

(i.e., the direction the mouse was “looking”) could be re-

constructed from firing of neurons in the anterodorsal tha-

lamic nucleus and postsubiculum (Fig. 2). Although both

firing rates and sequential firing patterns persisted in all

brain states, the temporal dynamics of the drift of the ac-

tivity packet varied. During REM sleep, when brain elec-

trophysiology is strikingly similar to waking, the packet

moved at the same speed as in the waking animal, essen-

tially recapitulating the situation when the mouse moved

its head in different direction in the waking animal. During

non-REM sleep, the HD signal drifted at a 10 times faster

speed, compared with waking and REM sleep, essentially

following the faster dynamics of non-REM sleep de-

scribed in cortical networks (Buzsáki 1989; Wilson and

McNaughton 1994). Of course, no real head movement

accompanied these changes in the sleeping animal; there-

fore, the temporal organization had to rely on internally

generated mechanisms rather than external stimuli.

The observation that the neuronal code of the head-

direction sense is preserved during sleep raises the possi-
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bility that self-organized mechanisms continue to be at

work also in the waking animal. Such an internal com-

putation can amplify and enhance precision of the head-

direction signal by filtering out, in the case of the head-

direction, all additional information that is not compatible

with a one dimensional angular signal. In the exploring

animal, sensory inputs can be combined with the predic-

tion of the internally generated head direction and rapidly

adapt to reconfigured environments (Zugaro et al. 2003).

In case of ambiguous or conflicting signals, self-orga-

nized mechanisms may generate the brain’s “best guess”

by interpolating across input signals or extrapolating the

correct position of the head-direction vector from limited

or ambiguous sensory information. Overall, these exper-

imental findings in a simple but fundamentally important

sense show that internally organized mechanisms are

continuously used to improve the brain’s interpretation

of the external world (Fig. 1B).

FROM NAVIGATION IN THE PHYSICAL

WORLD TO MENTAL TRAVEL

The hippocampal–entorhinal cortex has long been

linked to both navigation and memory (Scoville and Mil-

ner 1957; O’Keefe and Nadel 1978). It has been proposed

recently that neuronal mechanisms of memory and plan-

ning (“mental travel into the past and future”; Suddendorf

and Corballis 1997, 2007) have evolved from mecha-

nisms of navigation in the physical world (Buzsáki

2005; Buzsáki and Moser 2013). Below, we discuss that

the neuronal algorithms underlying navigation in real and

mental space are fundamentally the same. The key dis-

tinction is that during real world travel, external cues,

such as landmarks, combined with self-motion cues aid

in driving cell assembly sequences; when travel is inter-

nal, the brain must supply the supporting cues for navi-

gating through a mental space.

To support mental travel effectively, a neural sys-

tem evolved for navigation must develop the ability

to self-generate temporally evolving cell assembly se-

quences and a capacity to store large quantities of seem-

ingly unrelated episodes. It has been suggested that the

evolution of the entorhinal–hippocampal system illus-

trates the phylogenetic continuity of navigation and

memory and has the anatomical and physiological prop-

erties that make it especially suitable for meeting the

above requirements (Buzsáki 2005; Buzsáki and Moser

2013).

Figure 2. Persistence of head-direction cell assemblies in the anterodorsal nucleus of the thalamus during waking and sleep.
Waking. Simultaneously recorded head-direction cells with different direction preferences during exploration (right). Each line is a
neuron, increasing firing rates are represented by hot colors. Neurons are ordered according to their preferred head-direction. Note
sequential activity of head-direction neurons (from top to bottom). Bottom trace (white) is local field potential recording from the
hippocampus. (Left) Head-direction cell assembly activity displayed on a ring. As the head points to different directions, the hill of
spiking activity moves on the ring accordingly. REM, same arrangement as in waking. Note continued sequentially changing
activity of the head-direction cells despite the absence of head or body movement. (Reprinted, with permission, from Peyrache et al.
2015.)
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SENSORY-DRIVEN ACTIVITY OF THE

HIPPOCAMPAL NAVIGATION SYSTEM

The explicit spatial coordinates of an animal are encod-

ed by a combination of a variety of neuron types, including

“head-direction cells” of the thalamus and postsubiculum

(Ranck 1985; Taube 2007), “place cells” in the hippo-

campus (O’Keefe and Nadel 1978), “grid cells” (Hafting

et al. 2005), and “border cells” (Solstad et al. 2008) of the

entorhinal cortex and surrounding structures. The exact

functions of these cell types are yet to be determined, but

it has been suggested that the periodically active fields of

the grid cells provide a metric for the neural representa-

tion of space, in the same way that head-direction cells

provide a directional reference frame, whereas border

cells can assess allocentric distances in the discoverable

environment by triangulation (Moser et al. 2014).

The “temporally evolving sequences” referred to above

are, in navigational terms, paths. The paths represent a

temporal sequence of neighboring locations on a map.

Each map represents a specific environment. “Remap-

ping” refers to the finding that the organization of place

cells scramble from one environment to another (Muller

and Kubie 1987; Kubie and Muller 1991). Because place

cells that have neighboring firing fields will likely not

have neighboring firing fields in a second environment,

a single sequence of place cell firing not only codes a

specific path, but also a specific environment. Recent

findings, however, refine this strict “orthogonalized”

view of remapping. Although most neurons have single

place fields in a given environment, a small minority can

have multiple fields and this same minority of neurons

continues to fire in multiple environments. In fact, the

distribution of the number of place fields per hippocam-

pal neuron follows a lognormal distribution (Buzsáki and

Mizuseki 2014). This small subset is not only more active

in multiple environments, but their firing rates are higher,

emit more spike bursts and their place fields are larger

compared with those of the majority neurons. Important-

ly, the log-based rule organization applies to all cortical

regions and multiple neuronal functions from synaptic

strength distribution to macroscopic connectivity. The

ever-active minority provides the brain’s “best guess”

and offers “good enough” solutions to get by in any sit-

uation. On the other hand, the majority of less active

neurons comprises a large reservoir that can be mobilized

to precisely distinguish one situation from another and

incorporate novel ones as distinct (Buzsáki and Mizuseki

2014).

When the animal explores an environment, head-direc-

tion neurons, border cells, grid cells, and place cells con-

tinuously and coherently change their firing activity.

Traditionally, two sources of information have been con-

sidered as driving factors of the temporal evolution of cell

assembly sequences (Fig. 2). The first one is the constel-

lation of the landmarks available as the animal navigates

(O’Keefe and Nadel 1978). The second may derive from

the ideothetic (i.e., body-derived) cues from the vestibu-

lar and proprioceptic systems and self-motion-driven op-

tical flow from mostly local cues (McNaughton et al.

1996). Moreover, spatial firing does not require a rich

set of landmarks. Landmarks can be impoverished, sub-

sets removed, or the lights turned out, and firing will

remain stable and robust (Muller and Kubie 1987; Quirk

et al. 1990). These findings indicate that the brain is

capable of interpolating between cues and extrapolating

(generalizing or “pattern-completing”) from the available

external information.

However, even small insects, whose nervous systems

possess many fewer neurons and are made of simpler

circuits, are able to navigate using such strategies (Men-

zel et al. 1998). In principle, a small-sized network

should be sufficient for rodents as well if navigation in

a relatively fixed environment and range would be the

only goal. Indeed, in laboratory experiments, the explored

environment can be mapped at centimeter precision by

just a dozen or so grid cells (Fyhn et al. 2007) or place

cells (Wilson and McNaughton 1993), What advantage,

then, do the complex networks of the entorhinal–hippo-

campal system of mammals offer? One can speculate that

there are two advantages: first, to map specific features of

multiple environments; second, that such self-organized

networks (Fig. 1B) also have the ability to effectively

interpolate and extrapolate from the available cues and

hold information over long timescales, as well as use

previous experience from similar situations in more com-

plex environments. The ability to rapidly acquire multiple

representations, to maintain separation of these represen-

tations, to hold the representations over long timescales,

and to operate effectively on any, even in degraded con-

ditions, are several of the robust navigational capacities in

mammalian brains compared with simpler brains of spe-

cies where navigation is accomplished by much smaller

circuits.

SELF-ORGANIZED ACTIVATION OF THE

HIPPOCAMPAL NAVIGATION SYSTEM

A second way of generating sequential firing of cell

assemblies is by self-organization (Fig. 3), independent

of cues from either the environment or the body. Such

internally generated neural assembly sequences have

been long assumed to be a necessary substrate of cogni-

tion for various mental operations such as memory recall,

planning, and imagination (Hebb 1949). Indeed, perpet-

ually changing hippocampal assembly sequences can be

observed experimentally. For example, if a rat is trained

to run in a wheel with approximately the same speed and

facing in the same direction, the environmental and body-

derived cues remain constant throughout the run. If such

“clamped” behavior is part of a memory task to remem-

ber a previously made choice for planning for the appro-

priate future choice, hippocampal neurons display con-

tinuously changing assembly sequences (neuronal

“trajectories”; Fig. 4). Importantly, several measures of

the firing patterns of the internally organized sequences

during the delay period, including the duration of the

spiking activity of the neurons and the temporal relation-

ship of their spikes relative to the reference theta oscilla-
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tion cycle (O’Keefe and Recce 1993), are virtually iden-

tical with those of the place cells during translational

behavior (Pastalkova et al. 2008). The implication of

these observations is that the physiological mechanisms

that govern the progression of cell assembly sequences in

the hippocampus during navigation and memory are quite

similar. Although theta oscillation is an obligatory mech-

anism for generating internal cell assembly sequences,

environmental cues can maintain sequential place cell

activity even in the absence of theta rhythms (Wang

et al. 2015). The cognitive relevance of self-organized

sequential activity is emphasized by the observation

that identical initial conditions (e.g., a left choice was

rewarded) induces a similar assembly sequence each

time, whereas different conditions (i.e., different memo-

ries) can give rise to uniquely different neuronal trajecto-

ries, which accurately predicts upcoming choices in the

maze, including erroneous turns (Fig. 4). In accordance

Figure 3. Cell assembly sequences. Sequential activa-
tion of neuronal assemblies neurons (1–n) can be con-
trolled by the changing constellation of environmental
cues and/or proprioceptive information from the body
(top). During cognitive activity, sequential activation is
supported by self-organized patterning of assembly ac-
tivity (bottom). Not only first-order (neighbor) but also
higher-order (nonneighbor) connections can be repre-
sented in strongly connected recurrent networks.

Figure 4. Internally generated assembly sequences during cognitive activity. (A) Sequential firing patterns of hippocampal neurons in
a memory task. Center: Color-coded spikes (dots) of simultaneously recorded hippocampal CA1 pyramidal neurons. The rat was
required to run in the wheel facing to the left during the delay between the runs in the maze. (Left) Normalized firing rate profiles of
neurons during wheel running, ordered by the latency of their peak firing rates during left trials (each line is a single cell). (Right)
Normalized firing rates of the same neurons during right trials. (B) Sequential firing patterns of prefrontal pyramidal cells in a working
memory task. (Middle) Cheese odor or chocolate odor in the start area signals the availability of cheese or chocolate reward in the left
or right goal area (position 1), respectively. Travel trajectories were linearized (0–1). (Left) Neurons were ordered by the location of
their peak firing rates relative to the rat’s position in the maze during left trials. Each row represents the position-dependent normalized
firing rate of a single neuron. (Right) Normalized firing rates of the same neurons during right trials. (A and B are reprinted, with
permission, from Pastalkova et al. 2008 and Fujisawa et al. 2008, respectively.)
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with experiments in rodents, single-unit studies in human

patients showed that the hippocampus and entorhinal

cortex can generate numerous trajectories corresponding

to different memory episodes (Gelbard-Sagiv et al. 2008).

Subjects first viewed cinematic episodes that depicted

short clips of famous people and characters. Several neu-

rons responded selectively to only one or a few of the

episodes. In the critical part of the experiment, subjects

were asked to recall the characters and scenes without

any cues. Remarkably, the neurons that fired slightly be-

fore free recall (i.e., a verbal report) corresponded to the

same neurons that were activated while watching the cin-

ematic episodes in the learning phase (Gelbard-Sagiv

et al. 2008). These results support the view that the neu-

ronal assembly sequences that encode episodes are the

same that are active during the mental representation of

those episodes (Tulving and Thomson 1973).

Overall, these experiments illustrate that perpetually

changing cell assembly sequences can be induced in the

hippocampus independent of external cues (Fig. 1C), and

such disengagement can support cognitive performance.

Generation of neural sentences is not confined to the

hippocampal system. In the medial prefrontal cortex of

the rat, long neuronal sequences can also reliably differ-

entiate between right and left trajectories in the maze

before making a choice, with individual neurons active

only for a short duration (Fig. 4; Fujisawa et al. 2008).

The possibility exists that choice specific neuronal trajec-

tories in the hippocampus are selected by inputs from the

medial prefrontal cortex. Similar neuronal trajectories

have been also been described in the parietal cortex (Har-

vey et al. 2012). In summary, cortical circuits can produce

multitudes of unfolding assembly sequences in two dif-

ferent ways: either by responding to environmental/idio-

thetic stimuli, when such inputs are available, or by

generating them internally.

Analogous to spatial navigation, two forms of declar-

ative memory can be distinguished (Squire 1992). Similar

to the defining locations of the allocentric map, semantic

memory explicitly defines living things, objects, facts,

and events of the surrounding world independent from

temporal context (Tulving and Thomson 1972; Squire

1992). Episodic memory, in contrast, allows learning

and recalling self-referenced (first-person) experiences

in the context of both space and subjective time (Tulving

and Thomson 1972) for planning actions (Tulving 2002;

Buckner 2010), similar to linking together location se-

quences during exploration. Acquiring a spatial map re-

quires repeated exploration of the landmarks by self-

referenced navigation. Similarly, semantic knowledge is

generated by repeated episodic encounters until the items

lose their spatiotemporal context (Fig. 5; Squire 1992;

Eichenbaum et al. 1999; Buzsáki 2005).

On the one hand, declarative memories may be recalled

by supplying a variety of real world cues that induce an

association. This is, roughly, equivalent to an animal ex-

posed to a few cues from an environment recalling an

entire environmental representation. On the other hand,

declarative memories may be recalled without real

world cue triggers. For example, one may recall an epi-

sodic memory or a fact by association with another mem-

ory. Such vicarious memory recall is analogous to

vicarious navigational recall. We propose they have iden-

tical mechanisms.

INTERNALLY GENERATED NEURONAL

PATTERNS AND COVERT OUTPUTS IN THE

CEREBRAL CORTEX

We hypothesize that internally generated patterns are a

common feature of cortical organization which can func-

tion as a neuronal substrate to bridge long delays between

inputs and action. Connectivity patterns found in neocor-

tex support this notion. Superficial cortical neuronal lay-

ers may be viewed as a substrate for inducing such covert

outputs. While deep layer cortical neurons project to ac-

tion systems of the thalamus, colliculi, brainstem, and

even the spinal cord, the superficial layer can be viewed

as an extra, added loop to the deep layer with subcortical

outputs (Shepherd 2013). A novel neuron loop that is

added to the sensorimotor short loop is the extensive

associational areas, particular the prefrontal cortex.

Thus, perhaps it is not surprising that the anatomical

Figure 5. Place cell firing represents both episodic and semantic memory. Paths 1 and 2 are accompanied by cell assembly sequences
A–B–C and D–B–E. Internally generated firing of either of these sequences is equivalent to a specific episodic memory: movement
along Path 1 or Path 2. After a series of paths that activate cell assembly B, B alone is not associated with a particular path: it explicitly
represents a location. In this representation, the activation of cell assembly B, alone, is a semantic fact, location B.
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afferent–efferent connectivity and internal organization

of the agranular motor cortex and the prefrontal cortex are

so remarkably similar (Nimchinsky et al. 1995; Gabbott

et al. 2005). The notion is that there are two types of

motor output: the familiar “engaged” output, where mo-

tor cortical areas activate motor neurons and produce

behavior; and vicarious motor output, where an internal

analog of motor action is generated, with output remain-

ing entirely within the brain. If the brain contains a suf-

ficient model of the self and world, this type of imagined

or vicarious motor action can be examined internally for

potential consequences. This vicarious action is what we

call a “cognitive process.” Such vicarious action can be

used for navigation, as in the hippocampal navigational

system described earlier, or for other forms of motor

behaviors. At the physiological level such cognitive op-

erations require that the self-organized neuronal assembly

sequences are propelled forward via an optimal path or by

covert trial and error evaluating multiple possible out-

comes, solving detours, and finding shortcuts (Gupta

et al. 2012), much the same way as we navigate through

locomotion in the real world in the presence of environ-

mental feedback.

MEMORY AND THE OPTIMIZATION

OF BEHAVIOR

As discussed earlier, a fundamental goal of many neu-

ronal circuits and the brain as a whole is to predict the

future. However, predicting the future is possible only

after the organism has already experienced the conse-

quences of its actions and stored the outcomes of those

successful and failed actions in memory. Indeed, a bar-

rage of recent papers document the recognition that struc-

tures that have been traditionally viewed as memory

systems are inseparable parts of planning, imagining,

and action systems (Buckner and Carroll 2007; Schacter

and Addis 2007; Lisman and Redish 2009; Buckner

2010). What appeared to be memory of the past in the

sequential activity of cell assembly sequences, equally

well reflected the planned future action of the animal,

including commission errors, indicating that the action

outcome is the consequence of the brain’s interpretation

of the past experience (Fujisawa et al. 2008; Pastalkova

et al. 2008). Numerous sleep “replay” experiments in

both rodents and humans show that sleep patterns are

far from random but, instead, are reminiscent of waking

when the neuronal trajectories evolve under the influence

of sensory inputs (Wilson and McNaughton 1994; Ná-

dasdy et al. 1999; cf. Diekelmann and Born 2010). Trans-

fer operations, such as the sharp wave ripples of the

hippocampus, which were originally suggested to con-

solidate and move transient memories from the hippo-

campus to neocortex (Buzsáki 1989; Wilson and

McNaughton 1994), have been shown to generate spike

sequences that predict to-be-visited places and delayed

actions or a chaining of past and expected events (Diba

and Buzsáki 2007; Davidson et al. 2009; Gupta et al.

2010; cf., Carr et al. 2011; Buzsáki and Lopes da Silva

2012). Imaging experiments in humans have repeatedly

found that imagining and planning invariably activated

structures previously categorized as parts of the memory

system (Buckner and Carroll 2007; Schacter and Addis

2007; Buckner 2010). The emerging field of “active sens-

ing” (Katz 1989; Engel et al. 2013; Loeb and Fishel 2014)

also emphasizes the primacy of action in acquiring mean-

ing for sensation and perception (Schroeder et al. 2010).

These novel (or “revisited”) views break away from the

tradition of “boxing” man-invented terms into particular

brain structures and strategies to identify physiological

boundaries for preconceived mental boundaries (Buzsáki

2010). Instead, they emphasize interactions of brain sys-

tems as the fundamental operations that give rise to

behavioral entities that are hard to categorize strictly as

memory or planning, overt or covert, conscious or “auto-

pilot.” Regarding the self-organized brain activity as the

fundamental brain operation and viewing the brain’s re-

sponses to external perturbations as secondary actions

offers a new paradigm, in which “meaning” is acquired

by matching preexisting neuronal patterns to action-per-

ception (Buzsáki 2006). In support of this conjecture,

experiments in developing ferrets show that the similarity

between spontaneous and evoked activity increases pro-

gressively with age and is specific to responses evoked by

natural scenes, suggesting that internal models result

from the adaptation of brain states to the statistics of the

surrounding world (Fiser et al. 2004). By extension, the

construction of an internal representation of the self as a

special entity can be accomplished by the reprocessing of

internal data simultaneously with information about the

environment.

A critical issue that has to be explored in future exper-

iments is the significance of the duration of internally

organized sequences for cognition. There are numerous

brain operations, especially in the motor system, which

require sequential activity of neuronal firing, yet we are

not aware of the consequences of those operations and,

thus, they have not been considered as cognitive. Neuro-

nal events that are too short (,500 msec; Libet 2004)

tend not to evoke awareness. These likely include the

short (,100 msec) sharp wave ripple events of the hip-

pocampus (Buzsáki 1989). Yet, these events may be re-

garded as “subconscious rehearsals” for future actions or

priming for memory recall.

Although ample evidence exists to support the view

that internally organized cell assembly sequences are

the fundamental basis of mental operations, the “clutch”

operation is not well understood. However, currently ex-

isting and future technologies can be deployed to test the

hypothesis that mental travel and planning occur in real

time, similar to navigation. By reading out brain signals

and connecting them to actuators, such as a navigating

robot, thought control of the robot’s movements should

be possible. Experiments performed within the brain–

machine interface paradigm (Donoghue 2002; Fetz

2007; Nicolelis and Lebedev 2009) show the feasibility

of such outcomes. Furthermore, neuronal patterns that

can be read out during sleep can also be exploited to

compare them with waking operations and manipulate
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them to establish whether internally generated patterns in

the absence of conscious awareness can reflect waking-

related neuronal trajectories. This paper highlights recent

work in animal physiology that shows the implications of

self-organized, internally generated neuronal assembly

sequences. These findings support an emerging concep-

tion of the widespread importance of internal models as

covert, brain-based testing grounds for efficient optimi-

zation of behavior.
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O’Regan JK, Noë A. 2001. A sensorimotor account of vision and
visual consciousness. Beh Brain Sci 25: 883–975.

Pastalkova E, Itskov V, Amarasingham A, Buzsáki G. 2008.
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